
Adding Game Controllers
In this chapter, we are going to discuss a new feature available in iOS 7—game
controllers. Apple allowed video streaming from iOS devices to TV a long time
ago, but the lack of hardware controller support left many players underwhelmed.
Game controllers allow you to focus on the gameplay rather than controls, and if
you are using your iPhone or iPad as a controller, you don't receive any physical
feedback. This is one of the major drawbacks of touchscreen gaming—you won't
be sure whether you tapped the right thing unless you are looking at the screen.

Some companies started to work on this problem, and different controllers such
as iCade appeared. But they had one fundamental flaw in them—they had to be
supported by the developers in order to work with the game. Another issue was
connectivity. Some of them wanted to work over Bluetooth while others were
connected directly, and each of these methods had their downsides.

There were very few games that supported hardware controllers. Developers didn't
feel like supporting these controllers as the install base was far too small, which would
affect the sales, thus increasing the time spent to support them.

Another problem with such a controller is the lack of uniformity. Everybody makes
their own interface, and developers need to learn many different frameworks and
APIs in order to make these things work.

Another issue is the availability and spread of such controllers—the company might
go out of business, it may decide to not make more controllers, or their supply might
run out.

That's why supporting third-party controllers didn't work too well.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[82]

Native game controllers
Support for native game controllers first appeared in iOS 7. What are the advantages
of native controllers? Here are some of them:

•	 A universal API for every controller out there: You will need to
write the code only once to support a myriad of different controllers
by different manufacturers.

•	 An easy-to-use API written and supported by Apple engineers: You know
that your code will work on the latest versions of iOS and will generally be
supported throughout your application's lifetime. Bugs will be removed and
everyone will be happy.

•	 A standard layout for buttons and joysticks: You know what buttons each
controller will have and where they are expected to be.

Now that we have found out why game controllers are useful, let's incorporate them
into our project.

Game controller basics
The Game Controller API is based on the Game Controller framework.
Everything related to controllers happens there.

There are three types of controllers that are supported by the framework:

•	 Standard form-fitting controller: This is a controller in which the iOS device
resides. This controller has a direction pad, a pause button, four buttons,
and two shoulder buttons.

•	 Extended form-fitting controller: This is the same as the previous one, but it
can also have up to two sticks and two more shoulder buttons.

•	 Extended wireless controller: This is the same as the previous one, but it
works wirelessly and is an external device without holding your iOS device
in it.

The following figure shows the various types of controllers:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[83]

L2 shoulder button/trigger R2 shoulder button/trigger

LED array

Joysticks

L2

L1 R1

Y
X

A
B

R2

L1 shoulder button R1 shoulder button

Different controller types

Apple does not necessarily require a game controller to play
a game—there should always be a way to play your game via
touchscreen. Game controllers enhance your user's experience,
but do not force them to do so.

Wired controllers are automatically discovered, but their wireless counterparts
require a one-time setup and can be used freely after that. A controller and a device
will automatically connect to each other once they are powered on. There is no
difference from the code's perspective for wired or wireless controllers.

Each game controller is represented with the GCController object, which you can
use in your game. You receive notifications when a new one is being connected
or disconnected.

Each game controller has a profile that identifies it as a controller type. Currently,
there are two profiles—gamepad and extendedGamepad.

You can check GCController for the properties of gamepad and extendedGamepad.
If they exist, it means that the controller is one of those types. Otherwise, it will
return nil.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[84]

There are two ways to receive data from the controller, which are as follows:

•	 By reading the properties directly
•	 By assigning a handler (block) to each button to be executed on button press

The following is a sample method to read inputs if you want to read them at
arbitrary times:

- (void) readControlInputs
{
 GCGamepad *gamepad = self.myController.gamepad;
 if (gamepad.buttonA.isPressed)
 [self jumpCharacter];
 if (gamepad.buttonB.isPressed)
 [self shootApple];
 [self moveBy: profile.leftThumbstick.xAxis.value];
}

Here we are checking if the buttons are pressed, and if they are, we execute some
methods such as jumping or shooting. On the last line, we read the value of the
x axis on the left thumbstick to move our character left or right.

The second way to set handlers is as follows:

- (void) setupController
{
 GCExtendedGamepad *gamepad = self.myController.extendedGamepad;
 gamepad.buttonA.valueChangedHandler = ^(GCControllerButtonInput
*button, float value, BOOL pressed)
 {
 if (pressed)
 [self shoot];
 };
 gamepad.buttonX.valueChangedHandler = ^(GCControllerButtonInput
*button, float value, BOOL pressed)
 {
 if (pressed)
 [self openInventory];
 };
}

What we do here is set the block to each button (in this case, two buttons) to execute
a piece of code each time a button is pressed. One button shoots and the second
button opens the inventory. These handlers also get called when the player releases
the button, so you should check for the pressed variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[85]

Picking the positions of the thumbstick or the directional pad is a little more
complex. Usually, you get x and y values and you can work from there:

 GCControllerDirectionPadValueChangedHandler dpadMoveHandler =
^(GCControllerDirectionPad *dpad, float xValue, float yValue) {
 if (yValue > 0)
 {
 player.accelerating = YES;
 } else {
 player.accelerating = NO;
 }
 };

In this block, we check the y value, and if it is higher then 0 (neutral), we start jumping.

Each controller also has a pause button, and you should implement the functionality
of pausing your game when the user presses the pause button. The controller holds a
block for the pause button that gets triggered each time it is pressed.

Using a controller in our game
As our game is not too complicated, we use only one button. We will map the same
thing to a few buttons so that the players can use any one that they like.

The first thing that we need to do is import the GameController framework. In order
to do this, add the following line to ERGMyScene.h at the beginning of the file:

@import GameController;

The preceding line of code adds game controller headers and links our project with
the game controller library while it is compiling. After this, we will need two new
properties in the same file:

@property (strong, nonatomic) ERGPlayer *player;
@property (strong, nonatomic) SKLabelNode *pauseLabel;

We will need a way to access our player object from the code that sets up the game
controllers, so we add the first property in the preceding code to hold it.

The second one is the label for the paused state of our game. We will show or hide it
based on the current game state.

Right after the line where you add player as a child in the initWithSize: method
in ERGMyScene.m, add the following line of code:

self.player = player;

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[86]

Here, we set our property to hold a pointer to the player object. At the end of
initWithSize:, we will add the code to handle controller discovery and setup,
and create a pauseLabel, as shown in the following code:

 [self configureGameControllers];

 self.pauseLabel = [[SKLabelNode alloc] initWithFontNamed:@"Ch
alkduster"];
 self.pauseLabel.fontSize = 55;
 self.pauseLabel.color = [UIColor whiteColor];
 self.pauseLabel.position = CGPointMake(self.size.width / 2,
self.size.height / 2);
 self.pauseLabel.zPosition = 110;
 [self addChild:self.pauseLabel];
 self.pauseLabel.text = @"Pause";
 self.pauseLabel.hidden = YES;

Currently, we have not yet written the configureGameControllers method, but we
will do this shortly. The code to create a label should be fairly familiar to you—we
create a label node, set its properties, and set its position to the center of the screen
and hide it, as we don't want it to be visible in the unpaused state of the game.

Each scene has a paused property. When it is set to YES, the scene
stops evaluating actions for all descendants. But the update method
is still getting called! So, you may experience a very strange behavior.
If we pause our game now, all animations will stop, but the
background will still scroll.

The next thing that we need to do is stop updates if the scene is paused. To do that,
change the update method in ERGMyScene.m—add a check for the paused property
at the start of the update method and add the following code:

 if (self.paused) {
 return;
 }

This way, the update method will do something only if the scene is not paused,
which is the intended behavior. If the scene is paused, it will skip all that code and
drop out.

After this, we need the code to find any controllers and use them in our game. To do
this, add the following code to ERGMyScene.m:

- (void)configureGameControllers {

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(gameControllerDidConnect:) name:GCControllerDidConnectNotific
ation object:nil];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[87]

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(gameControllerDidDisconnect:) name:GCControllerDidDisconnectN
otification object:nil];

 [self configureConnectedGameControllers];

 [GCController
startWirelessControllerDiscoveryWithCompletionHandler:^{

 // we don't use any code here since when new controllers are
found we will get notifications
 }];
}

The first thing that we do is subscribe for notifications related to the game controller.
They are sent when a new controller is connected or disconnected from the device.
Next, we call another method to configure the controller.

Also, notice that if you turn off Bluetooth on your device, the game will crash on the
configureGameControllers method. The same thing will happen if you test on a
simulator. Adding error-checking unnecessarily complicates the code in our example,
so comment out [self configureGameControllers]; in the initWithSize:
method if you don't intend to use it on a Bluetooth-enabled device.

We also start searching for wireless controllers. We don't need any code inside the
completion handler as we will be getting notifications when controllers connect or
disconnect from the device. Let's get to the next method:

- (void)configureConnectedGameControllers {

 for (GCController *controller in [GCController controllers]) {
 [self setupController:controller forPlayer:self.player];
 }
}

This is a simple for loop, where we will go through all the available controllers
and run a common setup code for each of them. If you are making a more complex
or multiplayer game, you might want to differentiate the controllers here. There is
a handy playerIndex property on the controller that may prove useful for you,
but we don't use it here.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[88]

Most of the logic happens in the following method, where we set up actual
button handlers:

- (void)setupController:(GCController *)controller
forPlayer:(ERGPlayer *)player
{
 GCControllerDirectionPadValueChangedHandler dpadMoveHandler =
^(GCControllerDirectionPad *dpad, float xValue, float yValue) {
 if (yValue > 0)
 {
 player.accelerating = YES;
 } else {
 player.accelerating = NO;
 }
 };
 if (controller.extendedGamepad) {
 controller.extendedGamepad.leftThumbstick.valueChangedHandler
= dpadMoveHandler;
 }
 if (controller.gamepad.dpad) {
 controller.gamepad.dpad.valueChangedHandler = dpadMoveHandler;
 }

 GCControllerButtonValueChangedHandler jumpButtonHandler =
^(GCControllerButtonInput *button, float value, BOOL pressed) {
 if (pressed) {
 player.accelerating = YES;
 } else {
 player.accelerating = NO;
 }
 };

 if (controller.gamepad) {
 controller.gamepad.buttonA.valueChangedHandler =
jumpButtonHandler;
 controller.gamepad.buttonB.valueChangedHandler =
jumpButtonHandler;
 }
 if (controller.extendedGamepad) {
 controller.extendedGamepad.buttonA.valueChangedHandler =
jumpButtonHandler;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[89]

 controller.extendedGamepad.buttonB.valueChangedHandler =
jumpButtonHandler;
 }

 controller.controllerPausedHandler = ^(GCController *controller) {
 [self togglePause];
 };

}

At the beginning of this method, we create a handler for the directional pad and
thumbsticks—if the player presses the up button on the pad or moves the thumbstick
up, we will have the Y value going up from zero. Thus, we start jumping by setting
the accelerating property to YES.

After that, we check if the controller has an extendedGamepad profile, and if it does,
we attach this handler to the thumbstick. If it is a regular gamepad, we attach the
handler to the directional pad.

The same procedure is repeated when we declare a handler for a button—it checks
if the button is pressed and our character jumps; if it is, we set the A and B button
handlers to this handler.

The last handler that can be found in this method is the pause handler. It will get called
when a player presses the pause button. The following is the code for this method:

- (void) togglePause
{
 if (self.paused) {
 self.pauseLabel.hidden = YES;
 self.paused = NO;
 } else {
 self.pauseLabel.hidden = NO;
 self.paused = YES;
 }
}

Here we check if the scene is paused, and if it wasn't paused, we pause it and show
the Pause label. If it was paused, we continue the scene and hide the label.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[90]

Handling controller notifications
Another thing that we would want to handle is new controllers. We need to do
something when a controller connects or disconnects.

We can create a complex interface for that, but for our project, simple alerts will do.

The easy part is that when the controller disconnects, we won't get any new input,
so we don't need to do anything; we just show an alert and are done with it:

- (void)gameControllerDidDisconnect:(NSNotification *)notification {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Warning"
 message:@"Game
controller has disconnected."
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil, nil];
 [alert show];
}

We create the alertView object and show it. The user cancels it and goes on with
their game with touch controls.

But if we connect the controller, we need to ask the user if they actually want to
use it in the game. In order to do that, we need to set our scene as a delegate to
UIAlertView and change the @interface line in ERGMyScene.h to the following:

@interface ERGMyScene : SKScene <SKPhysicsContactDelegate,
UIAlertViewDelegate>

This means that we conform to UIAlertViewDelegate and that we will implement
certain methods to be executed after the user taps a button in the alert view.

When a new controller connects, we will get a notification and the following method
will get called, which should be added to the ERGMyScene.m file:

- (void)gameControllerDidConnect:(NSNotification *)notification {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Warning"
 message:@"Game
controller connected. Do you want to use it?"
 delegate:self
 cancelButtonTitle:@"No"
 otherButtonTitles:@"Yes",
nil];
 [alert show];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[91]

We create the alert view as before, but here we set its delegate to our scene.
The following is the delegate method:

-(void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == 1) {
 [self configureConnectedGameControllers];
 }
}

When you press a button in the alert view, and if it has the delegate set, it will call
this method on its delegate. The button's index starts at zero, and zero is the cancel
button that is always present. If there are any other buttons, they will have the
subsequent indexes.

Usually, if we have multiple alert views, we have to understand which alert view
called what, and what the button at said index should do.

But in our situation, we have only one alert view that has more than one button,
and we know what it is, so we don't actually need to check anything here. If the
user tapped the Yes button on the alert view, we will configure all the connected
controllers. If they click on No, which is at index 0, nothing will happen.

Adding sound and music
Our game feels a bit bland without sound effects, so we are going to add some.
We will add background music and sound effects.

Sprite Kit is mostly a graphics library, and sound support is limited, but there are
ways to add music to our game.

The first thing that we need to do is add music files to the project. To do this,
drag-and-drop Kick_Shock.mp3, shieldCharged.wav, and shieldSmashed.wav
to our project in Xcode. Select Copy items into destination group's folder and
make sure that Add to targets has your project selected.

In order to play background music, we will need to add the AVFoundation library
to our project.

The AVFoundation library is a collection of classes that allows for audio and video
playback on iOS devices. To add AVFoundation to our project, add the @import
AVFoundation; line to ERGMyScene.h. We will also need a new property to play
music. To do this, add the following property to ERGMyScene.h:

@property (strong, nonatomic) AVAudioPlayer* musicPlayer;

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[92]

After this, we need to create a new method to set up the playback sound. Add this
new method to ERGMyScene.m:

- (void) setupMusic
{
 NSString *musicPath = [[NSBundle mainBundle]
pathForResource:@"Kick_Shock" ofType:@"mp3"];
 self.musicPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:[NSURL fileURLWithPath:musicPath] error:NULL];
 self.musicPlayer.numberOfLoops = -1;
 self.musicPlayer.volume = 1.0;
 [self.musicPlayer play];
}

In the first line, we created a path to our background music file. Next,
we initialized AVAudioPlayer—a class that plays music from AVFoundation.
Then, we set numberOfLoops, the property that says how many times the
music should be repeated.

Next up is volume; it is set to 1.0 and sends play messages to the player.

After you have done this, call [self setupMusic] at the end of the initWithSize:
method of ERGMyScene.m but before the return statement.

In a few lines, we managed to add background music to our game. But we will
want to stop music playback if the Game Over screen is called. To do this, locate the
– (void) gameOver method in ERGMyScene.m, and add the [self.musicPlayer
stop]; line at the beginning of it. This will stop music playback.

We will also add short playback sounds to our game. We will have them for shield
charging and depleting. We won't use AVFoundation for this, as there is a simple
sound playback action in Sprite Kit. It is used in this way (don't add this code to
the project):

SKAction *soundAction = [SKAction playSoundFileNamed:@"name.mp3"
waitForCompletion:YES];
[self runAction:soundAction];

It works as any other action. You create an action and run it against the node.
Wait for completion means that the action is considered done as soon as it runs
if waitForCompletion is NO, and the action is considered running if you pass
YES to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[93]

Why haven't we used this action to play background music? It is used for playing
short sounds, as somehow removing this action does nothing. It is unclear if it is a
bug or a feature, but it is present in the previous version of Sprite Kit. The music
just keeps on playing.

As we handle shield effects in Player.m, it is a good place to add playback
sound. We will change the setShielded: method by adding music actions
to it. Replace your method with the following:

- (void) setShielded:(BOOL)shielded
{
 if (shielded) {
 if (![self.shield actionForKey:@"shieldOn"]) {
 [self.shield runAction:[SKAction
repeatActionForever:[SKAction animateWithTextures:self.shieldOnFrames
timePerFrame:0.1 resize:YES restore:NO]] withKey:@"shieldOn"];
 SKAction *musicAction = [SKAction playSoundFileNamed:@"shi
eldCharged.wav" waitForCompletion:NO];
 [self runAction:musicAction];
 }
 } else if (_shielded) {
 [self blinkRed];
 [self.shield removeActionForKey:@"shieldOn"];
 [self.shield runAction:[SKAction animateWithTextures:self.
shieldOffFrames timePerFrame:0.15 resize:YES restore:NO]
withKey:@"shieldOff"];
 SKAction *musicAction = [SKAction playSoundFileNamed:@"shieldS
mashed.wav" waitForCompletion:NO];
 [self runAction:musicAction];
 }
 _shielded = shielded;
}

As before, it handled the shield logic, but there is a little bit of playback sound
added to it.

Build and run the project; it should run and you should have background music
and sound effects fully working.

There is one more issue with our code. If you receive a call or exit from the
application, it will crash. This happens due to the fact that we need to close
AVAudioSession before our application resigns active. This class is used
underneath SKAction to play sounds.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Game Controllers

[94]

To fix this, add the @import AVFoundation; statement and add the following code
to your AppDelegate.m file:

- (void)applicationWillResignActive:(UIApplication *)application
{
 // prevent audio crash
 [[AVAudioSession sharedInstance] setActive:NO error:nil];
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 // resume audio
 [[AVAudioSession sharedInstance] setActive:YES error:nil];
}

This code handles AVAudioSession and prevents your application from terminating.

Summary
In this chapter, we have learned what advantages hardware game controllers have and
how to work with them. Adding game controller support to your game can certainly
provide a better user experience for your players. Some people prefer playing on
actual controllers than on touch-screen devices, since the screen is always flat and
doesn't provide feedback to touches. A player can use the controller without looking
at it, which completely changes the experience of playing if he/she is playing on a TV.
One might argue that with game controllers, Apple is making a move into the console
gaming territory, and a huge library of games on the iTunes App Store playable on
your TV or iPad with a separate hardware controller is opening another new way to
experience iOS games. Adding game controller support to your game is not difficult,
and if you are not already supporting them, you should really consider doing that.
We have also learned how to add background music and sound effects to your game.
In the next chapter, we will discuss how you can add your game to the App Store,
what provisioning profiles are, and how to prepare your application bundle.

In the next chapter, we will discuss how to prepare your application for the App
Store. We will also learn about provisioning profiles and procedures to have your
application approved by Apple.

www.it-ebooks.info

http://www.it-ebooks.info/

